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A B S T R A C T   

Epidemiologic studies have found associations between fine particulate matter (PM2.5) exposure and adverse 
health effects using exposure models that incorporate monitoring data and other relevant information. Here, we 
use nine PM2.5 concentration models (i.e., exposure models) that span a wide range of methods to investigate i) 
PM2.5 concentrations in 2011, ii) potential changes in PM2.5 concentrations between 2011 and 2028 due to on- 
the-books regulations, and iii) PM2.5 exposure for the U.S. population and four racial/ethnic groups. The 
exposure models included two geophysical chemical transport models (CTMs), two interpolation methods, a 
satellite-derived aerosol optical depth-based method, a Bayesian statistical regression model, and three data-rich 
machine learning methods. We focused on annual predictions that were regridded to 12-km resolution over the 
conterminous U.S., but also considered 1-km predictions in sensitivity analyses. The exposure models predicted 
broadly consistent PM2.5 concentrations, with relatively high concentrations on average over the eastern U.S. and 
greater variability in the western U.S. However, differences in national concentration distributions (median 
standard deviation: 1.00 μg m-3) and spatial distributions over urban areas were evident. Further exploration of 
these differences and their implications for specific applications would be valuable. PM2.5 concentrations were 
estimated to decrease by about 1 μg m-3 on average due to modeled emission changes between 2011 and 2028, 
with decreases of more than 3 μg m-3 in areas with relatively high 2011 concentrations that were projected to 
experience relatively large emission reductions. Agreement among models was closer for population-weighted 
than uniformly weighted averages across the domain. About 50% of the population was estimated to experi-
ence PM2.5 concentrations less than 10 μg m-3 in 2011 and PM2.5 improvements of about 2 μg m-3 due to modeled 
emission changes between 2011 and 2028. Two inequality metrics were used to characterize differences in 
exposure among the four racial/ethnic groups. The metrics generally yielded consistent information and suggest 
that the modeled emission reductions between 2011 and 2028 would reduce absolute exposure inequality on 
average.   

1. Introduction 

Epidemiologic studies have reported associations between concen-
trations of ambient fine particulate matter (PM2.5) and health effects 
including mortality (e.g., Di et al., 2017; Pappin et al., 2019; Pope et al., 

2020; USEPA, 2019). Globally, 4.2 million deaths have been attributed 
to PM2.5 air pollution in 2015 (Cohen et al., 2017). Epidemiologic and 
health-impact studies rely on accurate characterizations of population 
exposure to provide understanding of the health effects of ambient 
PM2.5. Due to the limited spatial and temporal coverage of routine 
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monitoring networks, many PM2.5 concentration models have been 
developed in recent years to provide complete coverage for exposure 
applications over large domains including the conterminous U.S. 

PM2.5 concentration models (hereafter exposure models) have been 
developed using various approaches including geophysical process 
modeling (Ostro et al., 2015; Wang et al., 2017), monitor-only methods 
(e.g., monitor averaging, nearest-monitor, interpolation) (Keller and 
Peng, 2019), hybrid land-use regression modeling (Beckerman et al., 
2013; Jerrett et al., 2017), satellite-derived aerosol optical depth (AOD) 
methods (van Donkelaar et al., 2010), Bayesian statistical modeling 
(Berrocal et al., 2010), and data-rich machine learning models (Chen 
et al., 2019; Di et al., 2016, 2019; Hu et al., 2017). These exposure 
models often demonstrate good predictive capability based on statistical 
performance metrics from cross-validation tests with withheld obser-
vations. For instance, several machine learning methods have reported 
R2 values of 0.80 or greater based on ten-fold cross validation of daily 
PM2.5 predictions over the conterminous U.S. in 2011 (Di et al., 2016, 
2019; Hu et al., 2017). However, model performance may vary with the 
spatial and temporal resolution of the application, and the suitability of 
a model could depend on the resolution and type of the epidemiologic 
analysis to be performed (e.g., cross-sectional analysis versus 
case-crossover design). 

Epidemiologic studies have examined the influence of different 
exposure characterizations on PM2.5-mortality associations and found 
some agreement in results. For instance, Jerrett et al. (2017) reported 
associations between PM2.5 exposure and mortality risk using multiple 
exposure models, although methods that incorporated ground-based 
observations yield larger risks than those estimated based on a 
remote-sensing-only model. Di et al. (2017) reported associations be-
tween PM2.5 exposure and mortality risks using the neural network 
exposure model of Di et al. (2016) and a nearest-monitor approach, with 
slightly larger risks based on the national exposure model. Health 
impact assessments have also examined the influence of differences in 
exposure characterization on outcomes. For instance, Jin et al. (2019) 
estimated a 28% uncertainty in the state-level mortality burden for New 
York associated with the choice of method used to estimate PM2.5 
exposure. Ford and Heald (2016) estimated similar variability in the 
mortality burden for the U.S. during 2004–2011 based on 
satellite-derived exposure estimates. 

Comparisons of PM2.5 concentrations based on different exposure 
models have also been performed. Jin et al. (2019) reported that seven 
publicly available PM2.5 products captured the decrease in PM2.5 con-
centrations over NY between 2002 and 2012, but that the models had 
limited ability to resolve the intra-urban spatial patterns of PM2.5 
evident in a high-resolution monitoring network. Studies have also re-
ported increasing differences in concentration among methods and 
degradation in performance with increasing distance to the nearest 
monitor (Berrocal et al., 2020; Huang et al., 2018; Jin et al., 2019; Kelly 
et al., 2019a). These results indicate that performance for many methods 
degrades in very places where we need exposure estimates, locations far 
from monitors. Diao et al. (2019) recently reported inconsistencies in 
PM2.5 estimates from several publicly available PM2.5 products and 
encouraged future research efforts. 

Investigations of PM2.5 concentrations over the conterminous U.S. 
based on multiple methods of exposure are limited and have not 
included predictions of some of the most widely used methods. Also, 
previous studies have not examined the influence of exposure modeling 
methods on the future-year air quality projections commonly used in 
regulatory planning. Moreover, the implications of differences in 
modeling approaches for characterizing population exposure have 
received little consideration, despite the importance of exposure char-
acterization for epidemiologic and health impact assessments. Finally, 
exposure models have recently been used to examine exposure 
inequality in Massachusetts (Rosofsky et al., 2018), but modeling of 
exposure inequality over larger domains is limited (Bravo et al., 2016) 
and has not considered possible future changes in PM2.5 exposure 

inequality. 
Here, we characterize annual average PM2.5 concentrations in 2011 

over the conterminous U.S. using nine exposure models that span a wide 
range of complexity and data sources. We then estimate the change in 
PM2.5 concentrations between 2011 and 2028 due to modeled emission 
changes associated with a suite of on-the-books regulations. Finally, we 
characterize PM2.5 exposure (i.e., population-weighted concentrations) 
and exposure inequality according to two metrics using modeled PM2.5 
concentrations for the 2011 and 2028 cases. The use of multiple models 
is intended to provide insights on current exposure modeling methods as 
well as a thorough characterization of PM2.5 concentrations and 
exposure. 

2. Methods 

We characterized PM2.5 concentrations for 2011 due to the greater 
availability of exposure model predictions for this period than more 
recent years. Also, chemical transport model (CTM) simulations are 
available from previous work to project 2011 PM2.5 concentrations in 
response to emission changes estimated to occur between 2011 and 
2028 (USEPA, 2017a). Nine exposure models were used that can loosely 
be classified into categories of geophysical process models, 
interpolation-based models, Bayesian statistical regression, a 
satellite-AOD-based model, and machine learning models. The models 
are based on a wide range of input data and algorithms and were 
developed independently by multiple research groups. 

2.1. Exposure models 

PM2.5 concentration estimates from two geophysical CTMs were 
used. CTMs simulate concentrations using scientific parameterizations 
of the key atmospheric processes that govern pollutant concentrations 
including emissions, transport, chemical reaction, and deposition. CTMs 
are therefore valuable for predicting PM2.5 concentrations under hypo-
thetical scenarios where observations are not possible. For exposure 
applications, CTM predictions are often calibrated to observations using 
statistical models. Here, we consider the uncalibrated CTM predictions 
as a reference for the statistical model predictions, and because CTM 
predictions are sometimes directly used in health studies (Ostro et al., 
2015; Wang et al., 2017). First, PM2.5 exposure fields were developed 
from a simulation of 2011 with the Community Multiscale Air Quality 
model, version 5.0.2. CMAQ was configured with the Carbon Bond 05 
(CB05) chemical mechanism, and anthropogenic emissions were based 
version 1 of the 2011 national emission inventory (NEI11). The model 
configuration, performance evaluation, and emission inventory have 
been described in detail previously (Kelly et al., 2019b; USEPA, 2015a). 
Second, PM2.5 exposure fields were developed using a simulation of 
2011 based on the Community Atmosphere Model with Extensions 
(CAMx), version 6.3.2. CAMx was configured with the Carbon Bond 
chemical mechanism (CB6r4), and anthropogenic emissions were based 
on version 2 of NEI11. The CAMx model configuration and performance 
evaluation have been described in detail by USEPA (2017a), and model 
emissions have been described by USEPA (2016) and USEPA (2017b). 
The modeling domain for the CTM simulations covered the contermi-
nous U.S. with 12-km grid spacing. The national emission totals for the 
CMAQ and CAMx simulations were within 2% for NOx, SO2, and volatile 
organic compounds (VOCs), and primary PM2.5 emissions were 4% 
higher in the CMAQ simulation. 

A PM2.5 exposure field was also developed by interpolating monitor 
concentrations to the 12-km CTM grid. We used the Voronoi neighbor 
averaging (VNA) interpolation approach, which calculates the PM2.5 
concentration at a prediction location as the inverse-distance-squared 
weighted average of monitored concentrations in neighboring Voronoi 
polygons (Abt, 2012; Fann et al., 2012). Additionally, PM2.5 concen-
trations were estimated using the extended VNA approach that weights 
the VNA interpolation using the ratio of CTM predictions between the 
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monitor location and the prediction point (Abt, 2012; Fann et al., 2012). 
This weighting effectively fuses the spatial gradients from the CTM field 
with the interpolated field of observations from VNA. The CAMx simu-
lation described above was used in the eVNA calculations. VNA and 
eVNA predictions were made quarterly on the 12-km CTM grid using the 
Speciated Modeled Attainment Test-Community Addition (SMAT--
CEv1.3) software. VNA and eVNA calculations are computationally 
efficient and can be made using publicly available software. 

A PM2.5 concentration field was also developed using a Bayesian 
statistical downscaling model (Berrocal et al., 2010) that incorporated 
PM2.5 monitoring data and the CMAQ simulation described above. The 
downscaler model is a linear regression model that relates observed 
concentrations to CMAQ output using spatially and temporally varying 
coefficients. The downscaler is fit within a Bayesian framework and 
provides estimates of prediction uncertainty (Berrocal et al., 2020). The 
downscaler has been found to achieve relatively good model perfor-
mance based on a limited amount of input data by explicitly accounting 
for the spatial dependence in PM2.5 concentrations (Berrocal et al., 
2020). Daily PM2.5 predictions were made on the national 12-km CTM 
grid. 

Also, PM2.5 predictions were used from a model that first relates 
satellite-derived AOD retrievals to surface PM2.5 concentrations using 
the geophysical relationship predicted by a global CTM (GEOS-Chem) 
with a nested simulation over North America. The initial PM2.5 estimate 
(based on AOD and GEOS-Chem) is then calibrated to ground-based 
observations using geographically weighted regression as described by 
van Donkelaar et al. (2019; V4.NA.02). Here we characterize PM2.5 
concentrations over the conterminous U.S. using the V4.NA.02.MAPLE 
product, which modifies the original V4.NA.02 product with additional 
developments as part of the MAPLE (Mortality–Air Pollution Associa-
tions in Low-Exposure Environments) project. Annual predictions at 1- 
km resolution were available from this method (hereafter VD2019), 
although fine-scale features at 1-km resolution are not expected to be 
fully resolved due to the influence of some coarser resolution inputs on 
the final dataset. Previous studies have reported that earlier versions of 
the VD2019 approach perform relatively well in remote areas due to the 
use of remote sensing information (Jin et al., 2019; Lee et al., 2012). 

PM2.5 exposure fields from three data-rich machine learning methods 
were also compared. Machine learning methods can model the complex 
nonlinear and interactive relationships among predictor variables across 
wide range of datasets relevant to PM2.5 formation. PM2.5 predictions 
were used from a neural network model that incorporated >50 predictor 
variables including predictions of a global CTM and satellite-derived 
AOD (Di et al., 2016). Daily PM2.5 predictions over the conterminous 
U.S. were available from this method at 1-km resolution (hereafter 
DI2016). Predictions based on a random forest model with about 40 
predictors variables were also used (Hu et al., 2017). Important pre-
dictor variables in the random forest included satellite-derived AOD and 
a convolutional layer for nearby PM2.5 measurements. Daily PM2.5 
concentration predictions were developed at 12-km resolution with this 
method (hereafter: HU2017). Finally, PM2.5 concentrations based on an 
ensemble of predictions from three machine learning methods (gradient 
boosting, random forest, and neural network) were used (Di et al., 
2019). PM2.5 estimates from the individual learners are optimally 
combined using a generalized additive model that accounts for 
geographic variations with thin-plate spline functions. This model 
(hereafter DI2019) incorporated a wide range of predictors including 
the CMAQ simulation described above. 

The nine exposure models are summarized in Table 1. Due to dif-
ferences in the spatial and temporal resolution of the methods and 
domain coverage, we averaged the fields to the coarsest spatial (12 km) 
and temporal (annual) resolution and included only grid cells where all 
models had coverage. Spatial averaging was done by calculating the 
mean of model prediction points located within a 12-km grid cell. The 
study therefore focuses on 12-km resolution, but we also consider 1-km 
fields in some cases to understand the effects of spatial averaging. The 

Table 1 
Summary of exposure modeling methods.  

Case Method 
Description 

Original 
Resolutiona 

Performance 
Statisticsb 

Reference 

CMAQ Geophysical 
process model 
based on 
unconstrained 
bottom-up 
methods 

Hourly, 12- 
km 

cTotal R2: 
0.24 
RMSE: 7.36 
MB: 0.57 
Slope: 0.62 

USEPA 
(2015a);  
Kelly et al. 
(2019b) 

CAMx Geophysical 
process model 
based on 
unconstrained 
bottom-up 
methods 

Hourly, 12- 
km 

cTotal R2: 
0.27 
RMSE: 6.35 
MB: − 0.29 
Slope: 0.53 

USEPA 
(2017a) 

VNA Inverse-distance- 
squared weighted 
interpolation of 
PM2.5 

observations in 
neighboring 
Voronoi polygons 

Quarterly, 
12-km 

dTotal R2: 
0.68 
RMSE: 3.5 
MB: 0.20 
Slope: 0.74 

Abt (2012);  
Kelly et al. 
(2019a) 

eVNA VNA 
Interpolation of 
monitor data but 
with 
interpolation 
weighted by the 
ratio of CTM 
predictions in the 
monitor cell to 
the prediction 
cell. 

Quarterly, 
12-km 

dTotal R2: 
0.48 
RMSE: 5.60 
MB: 0.40 
Slope: 0.88 

Abt (2012);  
Kelly et al. 
(2019a) 

Downscaler Bayesian 
statistical 
regression of 
CTM predictions 
and observations 
with spatially 
varying 
coefficients 

Daily, 12- 
km 

dTotal R2: 
0.66 
RMSE: 3.7 
Bias: 0.8 
Slope: 0.78 

Berrocal et al. 
(2010); Kelly 
et al. (2019a) 

VD2019 CTM scaling of 
satellite AOD to 
surface PM2.5 

with geographic 
weighted 
regression of 
residuals. 

Monthly, 1- 
km 

eR2: 0.73 
(0.55,0.86) 
RMSE: 1.8 
(1.5,2.4) 
Bias: 0.05 
(− 0.09,0.20) 
Slope: 0.88 
(0.72,0.95). 

van 
Donkelaar 
et al. (2019), 
following  
Table 1, 
modified as 
per V4. 
NA.02. 
MAPLE 
update 

DI2016 Neural network 
model based on 
wide range of 
predictors 
including 
satellite AOD and 
CTM modeling 

Daily, 1-km fTotal R2: 
0.81 
RMSE: 2.83 
Bias: 0.38 
Slope: 0.99 

Di et al. 
(2016) 

HU2017 Random forest 
model based on 
~40 predictors 
including 
satellite AOD and 
CTM modeling 

Daily, 12- 
km 

fTotal R2: 
0.80 
RMSE: 2.83 
Slope: 1.00 

Hu et al. 
(2017) 

DI2019 Ensemble model 
based on random 
forest, gradient 
boosting, and 
neural network 
learners with a 
wide range of 
predictors 

Daily, 1-km fTotal R2: 
0.832 
RMSE: 2.670 
Bias: 0.742 
Slope: 0.940 

Di et al. 
(2019)  

a Fields were averaged here to the annual period and a common 12-km grid. 
b RMSE: root-mean-square error (μg m-3); MB: mean bias (μg m− 3). 
c Statistics are based on daily PM2.5 predictions for 2011 that were not con-

strained with observations. 
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performance of the methods against withheld monitoring data has been 
reported previously and is consistent with the state-of-the-science for the 
individual approaches. Model performance is considered further in the 
Supporting Information (Text S1 and Figure S1), and the methods are 
summarized in Table 1. Note that the PM2.5 from the CTMs is calculated 
as the sum of simulated PM2.5 components and is not identical to the 
measured PM2.5, which is operationally defined by the Federal Refer-
ence Method (Noble et al., 2001). 

2.2. Projecting PM2.5 based on 2011 and 2028 emissions 

We projected the 2011 PM2.5 concentrations from the nine exposure 
models to 2028 using CAMx modeling based on emissions for 2011 and 
2028. In addition to the 2011 simulation described above, a second 
CAMx simulation was available that accounted for emission changes 
expected to occur between 2011 and 2028 due to a suite of on-the-books 
regulations and other factors (e.g., planned plant shutdowns). Emission 
inputs for the 2028 CAMx simulation were developed by projecting 
emission sectors individually from the 2011 CAMx case described above 
using spatially and temporally resolved information. The emission totals 
for the 2011 and 2028 simulations are provided in Table 2, and a full 
description of the emission projections is available in USEPA (2017b). 
The largest contribution to the 63% decrease in SO2 emissions over the 
conterminous U.S. between the 2011 and 2028 simulations was from 
electric generation units (76% decrease). The largest contribution to the 
50% decrease in modeled NOx (NO + NO2) emissions was from the 
onroad mobile source sector (77% decrease) followed by electric gen-
eration units (61% decrease). Note that the meteorology and chemical 
boundary conditions in the 2028 CAMx simulation were fixed at their 
2011 values, and so the 2028 CAMx modeling reflects changes compared 
to 2011 due to emission changes alone. 

To help reduce the influence of model bias, PM2.5 concentrations 
were projected using relative response factors (RRFs) developed from 
the ratios of modeled 2011 and 2028 PM2.5 concentrations (Cohan and 
Chen, 2014; NRC, 2004; USEPA, 2018). RRFs are generally applied on a 
species-specific basis to help mitigate the potential influence of a large 
model bias for one species dominating the overall response of PM2.5. 
RRFs for total PM2.5 in each grid cell were developed from RRFs for 
individual particle components by taking the species-weighted average 

of the component RRFs: 

RRFspecies =
C2028,species

C2011, species
(1)  

RRFTot,PM2.5 =

∑
CObs,speciesRRFspecies
∑

CObs,species
(2)  

where C2028,species and C2011,species are the modeled PM2.5 component 
concentrations in the 2028 and 2011 CAMx simulations, respectively; 
RRFspecies is the RRF for a given PM2.5 particle component; CObs, species is 
the PM2.5 component concentration in 2011 based on VNA interpolation 
of observations that have been adjusted for consistency with total PM2.5 
measurements (Frank, 2006); and RRFTot,PM2.5 is the RRF for total PM2.5. 
Calculation of CObs, species and RRFspecies was done using SMAT-CEv1.3. 
Finally, PM2.5 concentrations were projected from 2011 to 2028 using 
the RRFs for total PM2.5 as follows: 

PM2.5Mod,2028 =RRFTot,PM2.5PM2.5Mod,2011 (3)  

where PM2.5Mod,2011 is the modeled PM2.5 concentration in 2011 and 
PM25Mod,2028 is the modeled PM2.5 concentration in the 2028 emission 
case. Therefore the 2028 projected PM2.5 concentrations are influenced 
both by the RRFs (from CAMx) and the 2011 modeled concentrations 
(from each of the nine exposure models). 

2.3. Population data and exposure metrics 

To examine population exposure using the modeled concentration 
fields, we calculated population-weighted concentrations for the total 
population in the domain and for racial/ethnic subgroups as follows: 

CPM2.5,Pop.weighted =

∑
PopiCPM2.5,i
∑

Popi
(4)  

where CPM25,Pop.weighted is the population-weighted concentration of 
PM2.5 for a given population group, Popi is the population size in grid cell 
i for the given population group, and CPM2.5,i is the PM2.5 concentration 
in grid cell i. 

We used 2010 Census data based on the 1-km gridded product 
available from the Socioeconomic Data and Applications Center (CIE-
SIN, 2017) to characterize population distributions. In addition to total 
U.S. population, we considered the following racial/ethnic groups: 
non-Hispanic Black (NH-Black), non-Hispanic white (NH-white), 
non-Hispanic other (NH-other), and Hispanic. For exposure calculations 
based on 12-km concentration fields, the 1-km population data were 
regridded to the 12-km domain used for the exposure models. For cal-
culations with 1-km fields, modeled concentrations were matched with 
the nearest-neighbor grid point from the 1-km population data product. 
Population data were fixed at 2010 levels in all calculations, and so 
changes in exposure between 2011 and 2028 are due to concentration 
changes only. 

Two metrics were used to characterize differences in exposure for 
population sub-groups. First, we calculated the difference in population- 
weighted PM2.5 concentrations between the most and least exposed 
groups by state (i.e., the exposure gap), which is similar to the risk gap of 
Thind et al. (2019). The exposure gap is an absolute metric that uses the 
best-off group as the reference and does not include an explicit 
inequality aversion parameter (Harper et al., 2013; Levy et al., 2006). 
Second, we calculated the Between Group Atkinson index (AIBG), which 
was recently applied by Rosofsky et al. (2018) to examine trends in 
PM2.5 exposure inequality in Massachusetts. The AIBG is a relative metric 
that uses average exposure as the reference and includes an explicit 
inequality parameter, ε, which reflects the level of societal concern for 
inequality (Harper et al., 2013). The AIBG ranges from zero to one, with 
higher values indicating a less-equal distribution. Following Rosofsky 
et al. (2018), we calculate the AIBG as follows: 

d Statistics are based on 10-fold cross-validation of daily PM2.5 predictions for 
2015. 

e Statistics are based on 10-fold cross-validation of annual PM2.5 for 
2000–2016 in the U.S. (mean and range for individual years). 

f Statistics are based on 10-fold cross-validation of daily PM2.5 predictions for 
2011. 

Table 2 
Modeled emission totalsa for conterminous U.S. in 2011 and 2028 CAMx 
simulations.  

Pollutant 2011 (t yr− 1-a) 2028 (t yr− 1) Change 2011 to 2028 

SO2 6,403,986 2,351,163 − 63% 
NOx 14,163,826 7,135,556 − 50% 
VOC 17,160,045 13,660,423 − 20% 
PM2.5 4,599,665 4,413,668 − 4%  

a Emission totals were developed by projecting sectors individually with 
spatially and temporally resolved information. Projections for electric genera-
tion unit emissions include the Final Mercury and Air Toxics rule (December 21, 
2011); the Cross-State Air Pollution Rule (CSAPR) (July 6, 2011); and the CSAPR 
Update Rule (October 26, 2016). Projections for onroad mobile sources include 
the Tier-3 Vehicle Emissions and Fuel Standards Program (March 2014); the 
California Low-Emission Vehicle (LEVIII) program; and Light-Duty Vehicle 
Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards 
(October 2012); and Greenhouse Gas Emissions Standards and Fuel Efficiency 
Standards for Medium- and Heavy-Duty Engines and Vehicles (September 
2011). See USEPA (2017b) for more details. 
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AIBG = 1 −

(
∑n

j=1
fj

[
yj

y

]1− ε)
1

1− ε

(5)  

where n represents the number of subgroups in the population, fj rep-
resents the fraction of the total population in each subgroup, ӯj repre-
sents mean exposure of each subgroup, and ӯ represents the mean 
exposure over the full population within a given geographic boundary (i. 
e., state). 

Here we set ε to 0.75 consistent with previous studies (Fann et al., 
2011, 2018; Levy et al., 2006; Rosofsky et al., 2018). We perform all 
AIBG calculations using the inverse of the PM2.5 concentrations, since the 
AI was originally developed for income distributions, where high in-
come is considered desirable, whereas we are assessing PM2.5 exposure, 
where high exposure is undesirable (Harper et al., 2013; Rosofsky et al., 
2018). 

3. Results and discussion 

3.1. 2011 PM2.5 concentrations 

Annual average PM2.5 concentrations predicted by the nine models 
are shown in Fig. 1. In general, PM2.5 concentrations are higher in the 
eastern than western U.S., with some exceptions such as the high con-
centrations in the San Joaquin Valley and South Coast Air Basin of 
California. By U.S. climate region (Figure S2), the highest concentrations 
on average were predicted in the Ohio Valley region, where mean PM2.5 
ranged from 9.2 to 10.7 μg m-3 across all models (see Table S1 for the 
mean and range of model concentrations by region). The lowest con-
centrations were predicted in the Southwest region, where mean con-
centrations ranged from 2.6 to 5.3 μg m-3. The spatial variation in 
concentrations in the western U.S., where some of the cleanest and most 

polluted areas are located, tended to be greater than in the eastern U.S. 
(Fig. 1). 

The model predictions are in general agreement and are consistent 
with previous observation-based characterizations of PM2.5 spatial dis-
tributions in the U.S. (Hand et al., 2012; USEPA, 2019). However, dif-
ferences in the methodologies and input datasets lead to a range of 
model predictions. For instance, the CTMs predicted lower domain-wide 
average concentrations than the non-CTM models (i.e. 5.7 μg m-3 vs. 
6.3–7.6 μg m-3) but relatively high concentrations in urban areas in the 
eastern U.S. (Fig. 1). The standard deviation (sd) across the models 
(excluding the CTMs) is shown in Fig. 2a to illustrate the spatial distri-
bution of the spread in model predictions (see Figure S3 for the 
maximum difference across models). The median (25th, 75th percentile) 
sd over all U.S. grid cells is 1.00 (0.78,1.26) μg m-3, with the highest 
values in the western U.S. The sd divided by the mean (i.e., the coeffi-
cient of variation, cv) is shown in percentage units in Fig. 2b. The me-
dian (25th, 75th percentile) cv over all U.S. grid cells is 15.49 (9.34, 
25.19) %. The cv is lower in the east than the west—e.g., the median 
value is 9.60% for grid cells east of 100W and 25.05% for cells west of 
100W. This difference is due in part to the generally higher PM2.5 con-
centrations in the eastern than western U.S. Modeling PM2.5 concen-
trations in the west is more challenging than in the east due to factors 
such as complex terrain, prevalent wildfire, relatively sparse moni-
toring, and areas with low PM2.5 concentration and sharp PM2.5 gradi-
ents (Di et al., 2016; Geng et al., 2018; Kelly et al., 2019b). 

The sd has limited variation as a function of PM2.5 concentration, 
with slightly higher values in the 5–7 μg m-3 range (Figure S4a). In 
contrast, the cv increases with decreasing PM2.5 concentration 
(Figure S4b). Previous studies have reported some degradation in the R2 

performance statistic with decreasing concentration, whereas bias and 
RMSE were relatively insensitive to concentration (e.g., Just et al., 2020; 
van Donkelaar et al., 2019). This behavior could be due to increases in 

Fig. 1. Annual average PM2.5 concentrations (μg m-3) in 2011 based on nine exposure models averaged to a common 12-km grid.  
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the proportion of the PM2.5 distribution that is explained by less pre-
dictable stochastic variation as concentrations decrease (Just et al., 
2020). The implications for specific applications of differences in per-
formance according to different metrics is an area of current research 
and relates to what types of performance are most relevant for the 
research question of interest (e.g., daily variation or absolute pollutant 
levels). 

In Fig. 3a, PM2.5 concentrations over Los Angeles in 2011 are shown 
for the exposure fields averaged to a common 12-km grid. The spatial 
distributions in PM2.5 concentrations vary across methods, but realistic 
features are generally evident in the fields. These features include 
relatively high PM2.5 concentrations near downtown LA, the Long Beach 
ports, and to the east of downtown LA (i.e., downwind of LA on the sea- 
breeze). Also, the methods generally capture the relatively low PM2.5 
over the mountains to the north of LA, although this feature is muted in 
the relatively smooth VNA and Downscaler fields. Since VNA predictions 
are based solely on monitor data, the limited basin-to-mountain gradient 
in PM2.5 concentrations may be attributed to limited monitoring in the 
elevated terrain. The higher PM2.5 concentrations for CMAQ than CAMx 
could be related to differences in the emission inventories and poten-
tially less atmospheric mixing in CMAQ (updates were made to enhance 
mixing in CMAQ version 5.1 (USEPA, 2015b) compared with version 
5.0.2 used here). 

In Fig. 3b, PM2.5 concentrations over Los Angeles are shown for the 
three 1-km fields. Terrain features and fine-scale spatial variability in 
PM2.5 over the area are better represented in the 1-km than 12-km fields. 
However, differences in fine-scale spatial features exist among the three 
1-km exposure fields, and some of the features are counterintuitive. For 
instance, PM2.5 concentrations are slightly lower over the major road-
ways than over neighboring areas in the DI2019 method (the opposite 
pattern exists in some other urban areas such as Denver, Figure S5), and 
roadway features are indistinct in the DI2016 and VD2019 fields. 
Variability in the roadway features across cities in the DI2019 method 
may be due to differences in the relative values of the predictor variables 
(e.g., elevation) or influence of base learners across cities. Differences in 
roadway features between DI2016 and DI2019 could be related to the 
use of random forest and gradient boosting (in addition to neural 
network) in DI2019 but neural network alone in DI2016, since both 
models were trained using road density variables. Traffic influence was 
considered indirectly in the VD2019 method (via AOD, GEOS-Chem, and 
monitoring), which may not fully resolve the fine-scale features asso-
ciated with roadways. Considering that the models were optimized over 
large domains (i.e., conterminous U.S. for DI2016 and DI2019, and 
North America for VD2019) using different data and algorithms, dif-
ferences in fine-scale features among the models are not surprising. For 
city-specific applications, recent studies have demonstrated the promise 
of urban-scale models that incorporate non-regulatory data (Huang 
et al., 2019) and low-cost monitors (Bi et al., 2020; Eilenberg, 2020; Li 
et al., 2020). 

In Fig. 3c, the difference in PM2.5 concentrations between the 12-km 
and 1-km grids is shown. The largest differences occur for grid cells that 
span a wide range of terrain. For instance, a band of cells to the north of 
Pasadena had lower concentrations at 12-km than 1-km resolution just 
south of the mountains, and higher concentrations over the mountains. 
Similarly, relatively large differences between 12-km and 1-km fields 
are evident for cells to the east of LA that include a relatively wide range 
of terrain elevation (e.g., see VD2019 field). Spatial maps for additional 
urban areas are provided in Figures S5-S10 to further illustrate features 
of the exposure fields. 

3.2. ΔPM2.5 concentrations: 2028–2011 

The modeled change in PM2.5 concentrations between the simula-
tions for 2028 and 2011 is shown in Fig. 4. Nationally, the average 
ΔPM2.5 ranged from − 0.85 to − 1.02 μg m-3 across the models. Regional 
air quality improvements were greater than the national average for the 
Ohio Valley region (− 2.1 to − 2.4 μg m-3) and lower for the Southwest 
region (− 0.1 to − 0.2 μg m-3). These patterns are consistent with the 
locations of the modeled emission reductions (e.g., large SO2 emission 
reductions from electric generation units were projected for the Ohio 
Valley region). 

Since the same RRFs (i.e., from CAMx) were used to project all 
exposure fields, the differences in ΔPM2.5 among models are associated 
with differences in the 2011 PM2.5 concentrations alone (i.e., 
PM2.5Mod,2011 in Eqn. (3)). The spatial patterns of ΔPM2.5 in Fig. 4 
therefore resemble the concentration fields in Fig. 1 (e.g., Downscaler 
predicts relatively large, smooth values in the Ohio Valley and CMAQ 
predicts relatively narrow peaks in urban areas). The spatial distribution 
of the maximum difference in ΔPM2.5 across the non-CTM models is 
illustrated in Figure S11. Developing RRFs from multiple CTM simula-
tions would introduce additional variability into results, although such 
modeling is not available. 

In Fig. 5, distributions of ΔPM2.5 are shown as a function of different 
strata of the 2011 PM2.5 concentrations for the different models. The air 
quality improvements from 2011 to 2028 generally increase with 
increasing 2011 concentration. This behavior reflects the influence of 
emission reductions from sources that contributed to the relatively high 
PM2.5 concentrations in 2011. There was general agreement in ΔPM2.5 
estimates among models as a function of 2011 PM2.5 concentration, 
especially for the non-CTM models. For instance, the median ΔPM2.5 
ranged from − 1.77 to − 2.01 μg m-3 across models for 2011 PM2.5 con-
centrations between 9 and 11 μg m-3. The range in the median ΔPM2.5 
across methods is slightly greater for 2011 concentrations between 7 and 
9 μg m-3 (− 0.95 to − 1.54 μg m-3) and 11 and 20 μg m-3 (− 1.92 to − 2.67 
μg m-3). Overall, the impacts of the emission changes on PM2.5 con-
centrations are broadly consistent among methods, although the CTMs 
tended to have slightly greater impacts, which may be due to the larger 
uncertainty in the CTM simulations than the observationally constrained 

Fig. 2. Standard deviation and coefficient of variation for PM2.5 concentrations from the exposure models in Fig. 1, excluding the CTMs (CMAQ and CAMx).  
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methods. Note also that the agreement in ΔPM2.5 among models is due 
in part to the use of the same RRFs for projecting the 2011 PM2.5 fields. 
Uncertainty in the RRFs, which was not examined here, likely contrib-
utes more to the uncertainty in ΔPM2.5 than does uncertainty in 2011 
PM2.5 field. 

3.3. Population exposure 

In this section, we combine the modeled PM2.5 concentrations with 

population data to examine PM2.5 exposure levels in an approach often 
called population-weighting. In Fig. 6a, the percentage of U.S. grid cells 
and population exposed to 2011 PM2.5 levels are shown for the exposure 
models. For instance, a negligible percentage of grid cells have con-
centrations less than about 2 μg m-3 across all models, and almost all grid 
cells have concentrations less than about 12.5 μg m-3 (Fig. 6a, left panel). 
A roughly 2.8 μg m-3 spread exists among models (1.7 μg m-3 excluding 
the CTMs) in the concentration predicted at the 50% exposure level 
across U.S. grid cells. Agreement is closer for population-weighted 

Fig. 3. Annual average PM2.5 concentrations over Los Angeles in 2011 based on (a) 12-km and (b) 1-km gridded exposure fields, and (c) difference between 12-km 
and 1-km fields (12 km–1 km). 
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averages (Fig. 6a, right panel) than uniformly weighted averages across 
the domain. A roughly 1 μg m-3 spread exists among models (0.8 μg m-3 

excluding the CTMs) in the concentration predicted at the 50% exposure 
level for the U.S. population. The closer agreement in terms of popula-
tion weighting than for equal weighting of all grid cells is because 
relatively large differences among models occur in sparsely populated 
parts of the western U.S. (e.g., Fig. 2a). 

Cumulative exposure curves for the U.S. population to ΔPM2.5 con-
centrations (2028–2011) are shown in Fig. 6b. Good agreement exists 
among model estimates for population-weighted ΔPM2.5 concentra-
tions. For instance, a 0.2 μg m-3 spread exists among models in the 
ΔPM2.5 concentration predicted at the 50% exposure level. The agree-
ment among models is due in part to the use of the same RRFs in pro-
jecting all exposure fields from 2011 to 2028. Overall, the results in 

Fig. 6 indicate that agreement among models is closer for population 
exposure than for average domain levels, and the change in population 
exposure is relatively insensitive to differences in the baseline exposure 
field. However, CTM results deviate by a relatively large amount from 
the other models and demonstrate the value of calibrating CTMs with 
monitoring data in exposure applications. 

Modeled 2011 PM2.5 exposure concentrations are shown for the total 
population and the four racial/ethnic groups in Fig. 7a. The spread 
among the non-CTM models in the average population-weighted con-
centration ranges from to 0.5–0.9 μg m-3 for the five population cate-
gories. The relative rank in exposure concentration for the racial/ethnic 
groups is similar among models, with all models estimating the lowest 
exposure concentrations for the NH-white population and highest for the 
NH-Black population. This result is consistent with previous studies (Bell 

Fig. 4. Change in annual average PM2.5 concentrations (2028–2011; μg m-3) based on nine exposure models averaged to a common 12-km grid.  

Fig. 5. Box and whisker plot depicting distributions of modeled ΔPM2.5 (2028–2011) as a function of 2011 PM2.5 concentration. The boxes bracket the interquartile 
range (IQR; 25th to 75th percentiles), the horizontal line within the box represents the median, whiskers represent 1.5 times the IQR from either end of the box, and 
circles represent individual values less than and greater than the range of the whiskers, respectively. 
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and Ebisu, 2012; Miranda et al., 2011). Population-weighted average 
concentrations for the 1-km fields (i.e., DI2016, DI2019, and VD2019) 
are generally similar to those for the respective 12-km fields, but with 
slightly higher values for the 1-km field in the DI2019 (up to 0.3 μg m-3) 
and VD2019 (up to 0.5 μg m-3) cases (Figure S12). 

Population-weighted average ΔPM2.5 concentrations (2028–2011) 
are shown for the total population and four racial/ethnic groups in 
Fig. 7b. The values are similar among models for the five population 
groups. The NH-Black population, which experienced the highest 
exposure in 2011, is projected to experience the greatest reduction in 
exposure among racial/ethnic groups by 2028. The smallest air quality 
improvement is projected for the Hispanic group, possibly due to the 
relatively large percentage of the Hispanic population in the western U. 
S. and parts of the domain that experienced fewer PM2.5 reductions (c.f., 
Figure S13 and Fig. 4). On a percentage basis, the reductions in 
population-weighted PM2.5 between 2011 and 2028 were similar for the 
NH-white (− 19%) and NH-Black (− 20%) populations and slightly lower 
for the Hispanic population (− 15%). 

In Fig. 8a, the difference in population-weighted PM2.5 concentra-
tions between the highest and lowest exposed racial/ethnic group (i.e., 
the exposure gap) is shown by state, with labels for the highest exposed 
group when differences exceed 0.5 μg m-3 (this value was selected 
considering the sd among model predictions, discussed below). Results 
in Fig. 8a are based on the mean concentration across the non-CTM 
models. The exposure gap in 2011 is less than 1 μg m-3 in most states 
but approaches 2 μg m-3 in Arizona and South Dakota. The relatively 
large gaps in these states appear to be driven by the distribution of the 
NH-Black population toward the the cities (e.g., Soux Falls, SD and 
Pheonix, AZ), where PM2.5 concentrations are relatively high, compared 

with the relatively broad distribution of the NH-other population 
throughout the state, where PM2.5 concentrations are lower on average 
(c.f., Fig. 1 and Figure S13). The distributions of the NH-other popula-
tion in these states appear to be strongly influenced by those of the 
American Indian and Alaskan Native population (Figure S14). The 
exposure gap is projected to decrease from 2011 to 2028, with most 
states having values less than 0.5 μg m-3 and all states having values less 
than 1.5 μg m-3 in the 2028 case. This projected decrease continues a 
trend of decreasing absolute exposure disparity associated with roughly 
proportional reductions in PM2.5 concentrations in recent decades 
(Colmer et al., 2020). 

Although the general patterns in Fig. 8a are consistent with results 
for the individual models (Figure S15), some variability in the magni-
tude of the exposure gap and identity of the most-exposed group is 
evident. In Fig. 8b, the sd of the exposure gap across the non-CTM 
models is shown along with the number of models that identified the 
same most-exposed group as for the mean concentration field used in 
Fig. 8a. The sd for the fields is less than 0.5 μg m-3 in all states except 
Wisconsin, where a relatively large difference in concentration between 
the urban and northwestern areas led to a greater gap in the VD2019 
field (c.f. Fig. 1 and S15). Also, there is general agreement in the most 
exposed group among models (Fig. 8b). This agreement builds confi-
dence in the use of the models for large-scale exposure applications, 
although distinguishing small differences in exposure among groups in a 
given area may require development of an area-specific model that 
incoporates local information. 

In Fig. 9, the AIBG for 2011 and 2028 is shown by state based on the 
mean PM2.5 concentrations across the seven non-CTM exposure models. 
The spatial pattern of AIBG resembles that of the exposure gap metric in 

Fig. 6. The percentage of (a) U.S. grid cells and population exposed to PM2.5 concentrations less than the values depicted by the curves and (b) U.S. population 
exposed to ΔPM2.5 concentrations less than the values depicted. Population data is based on the 2010 Census. 

Fig. 7. Population-weighted average (a) 2011 PM2.5 and (b) ΔPM2.5 (2028–2011) concentrations for the total population and four racial/ethnic groups based on 
2010 Census data. DS: Downscaler. 
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Fig. 8a, with relatively high values in SD, AZ, NM, NY, and CA. The AIBG 
also decreases from 2011 to 2028 due to reductions in the relatively high 
PM2.5 concentrations (Fig. 5) that narrow the distribution of exposure 
across groups in 2028. However, the sd for the AIBG appears to be 
relatively large in relation to the mean compared with the exposure gap 
metric. For example, the cv is 99% for the AIBG in South Dakota in 2011, 
compared with 23% for the exposure gap. The relatively large cv for the 
AIBG might be related to the use of the mean concentration as the 
reference (Eqn. (5)) compared with the best-off group for the exposure 
gap metric (i.e., deviations from the mean may be harder to distinguish 
compared with the full exposure gap). This information, as well as the 
general consistency in results for AIBG and the exposure gap and other 
properties of the metrics (Harper et al., 2013; Levy et al., 2006), may be 
useful in guiding future study design. 

4. Conclusions 

At regional and national scales, the nine exposure models provided 
broadly consistent estimates of annual average 2011 PM2.5 concentra-
tions, with relatively high concentrations in the eastern U.S. and more 
variability in the west. The general agreement among the non-CTM 
models suggests that exposure studies based on the individual models 
may yield broadly similar conclusions in some cases. Yet differences in 
model performance for the methods are evident from previous reports, 
and some differences in PM2.5 concentration predictions were found 
here due to the differences in model algorithms and input data. The 
median sd for the non-CTM models that had been averaged to a common 
12-km grid was 1.00 μg m-3 nationally. The CTMs, which are not con-
strained by observations, predicted lower domain-average concentra-
tions than the other models (i.e. 5.7 μg m-3 vs. 6.3–7.6 μg m-3) but 
relatively high concentrations in urban areas in the eastern U.S. 

All models estimated relatively high PM2.5 concentrations over urban 

areas compared with surrounding areas, but differences in the spatial 
patterns within urban areas were evident. Fine-scale features associated 
with terrain and major roadways that were present in the 1-km fields 
were largely removed when concentrations were based on the 12-km 
grid. However, fine-scale features were inconsistent among the 1-km 
fields. Considering these differences and the similarity in results for 
the 12-km and 1-km fields in terms of national population-weighted 
concentrations and model-observation comparisons, the 12-km resolu-
tion may be justified for estimating exposure statistics over large do-
mains. High-resolution exposure applications for individual cities may 
benefit in the future from the development of city-specific models that 
incorporate local information (e.g., low-cost sensors). 

PM2.5 concentrations were estimated to decrease by about 1 μg m-3 

on average due to modeled emission changes between 2011 and 2028 
associated with on-the-books regulations. Decreases of more than 3 μg 
m-3 were predicted in areas with relatively high 2011 PM2.5 concen-
trations (e.g., the Ohio Valley region) due in part to SO2 emission re-
ductions from electric generation units. The projected pattern of greater 
PM2.5 improvements for areas with relatively high 2011 PM2.5 concen-
trations was generally consistent among the models. 

Cumulative distributions of PM2.5 concentrations over the U.S. 
illustrated the spread in predicted concentrations among models. For the 
non-CTM models, a roughly 1.7 μg m-3 spread exists in the 2011 PM2.5 
concentration estimated at the 50% exposure level for model grid cells, 
and a smaller spread (roughly 0.8 μg m-3) exists in terms of population 
exposure. The closer agreement in terms of population-weighted aver-
ages than uniformly weighted averages is due to the relatively large 
differences among models in sparsely populated and monitored parts of 
the western U.S. About 50% of the population was estimated to expe-
rience PM2.5 concentrations less than 10 μg m-3 in 2011 and PM2.5 im-
provements of about 2 μg m-3 due to modeled emission changes between 
2011 and 2028. 

Fig. 8. (a) Difference in population-weighted PM2.5 concentration based on the mean of the non-CTM models between the highest and lowest exposed racial/ethnic 
group (i.e., exposure gap) with labels for the highest exposed group when differences exceeded 0.5 μg m-3 and (b) the sd of the exposure gap calculated from the seven 
non-CTM models, with the number of models that identified the same most-exposed group as the median field. 
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Differences in population-weighted concentrations among the non- 
CTM models ranged from 0.5 to 0.9 μg m-3 nationally for the total U. 
S. population and four racial/ethnic groups. The relative rank in the 
average exposure concentration for the racial/ethnic groups was similar 
among models. The NH-Black population was estimated by all models to 
have the highest PM2.5 exposure in 2011 and experience the greatest 
reduction in PM2.5 exposure between 2011 and 2028. 

Eight states were predicted to have exposure gaps among racial/ 
ethnic groups greater than 1 μg m-3 in 2011, but this decreased to three 
states in 2028 due to the modeled emission reductions. The AIBG metric 
also suggested improvements in exposure inequality between 2011 and 
2028. The projected decrease in absolute exposure inequality continues 
a trend over recent decades (Colmer et al., 2020). The sd in the AIBG 
metric among the non-CTMs was relatively large compared with the sd 
in the exposure gap metric in relation to the respective values calculated 
using the mean concentration field. These differences could be due to the 
use of mean exposure as a reference in the AIBG metric and best-off group 
in the exposure gap. 

By examining predictions of multiple models, our study provided 
insights on current exposure modeling methods as well as a thorough 
characterization of PM2.5 concentrations and exposure. However, the 
performance of the individual models and their suitability for opera-
tional use varies, and so a multi-model approach may be less effective 
than a single-model approach in a specific application, and the choice of 
method may influence results depending on the exposure features that 
are of interest and model performance. Improved understanding of how 
model skill in terms of various performance metrics relates to outcomes 
in specific applications would help inform future study design. Relating 
the PM2.5 exposure concentrations described above to health risks would 
also be valuable. 
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